翻訳と辞書 |
Multidimensional Chebyshev's inequality : ウィキペディア英語版 | Multidimensional Chebyshev's inequality
In probability theory, the multidimensional Chebyshev's inequality is a generalization of Chebyshev's inequality, which puts a bound on the probability of the event that a random variable differs from its expected value by more than a specified amount. Let ''X'' be an ''N''-dimensional random vector with expected value and covariance matrix : If is a positive-definite matrix, for any real number : : ==Proof== Since is positive-definite, so is . Define the random variable : Since is positive, Markov's inequality holds: : Finally, :
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Multidimensional Chebyshev's inequality」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|